STABILITY OF A COMPRESSIBLE BOUNDARY LAYER
RELATIVE TO A LOCALIZED DISTURBANCE

A. S. Dryzhov UDC 532.526

The problem of stability of an incompressible boundary layer relative to a localized distur-
bance is considered in a linear approximation, It is shown that the stability analysis reduces
to the study of a discrete spectrum of eigenvalues of the corresponding boundary value
problem, By means of numerical integration, analysis of the character of the emerging insta-
bility is carried out for an unstable mode for the Mach number M = 4.5,

1. The problem of stability of a compressible boundary layer on a flat plate relative to a localized
disturbance is considered. The plate is located in the xz plane parallel to the incident flow; the velocity of
the incident flow is directed along the x axis. The equations of gas dynamics are linearized relative to a
small deviation q from the stationary distribution Qg:

0W=0,+q0 (1.1)

For the systemofequations that is linear relative to q, we solve the Cauchy problem and study the
asymptotic behavior of the solution fort — «, The analysis is carried out with the following assumptions.
The Prandtl number (Pr) and the ratio of the specific heats (y) are considered to be constant; the state
equation of an ideal gas is used. The dependence of the stationary distribution of velocity, temperature,
and density on x is neglected, and the flow in the nonperturbed boundary layer is assumed to be plane-
parallel.

2. For the assumptions just made (which are usual for problems of stability of boundary layers
[1, 2]), the solution of the problem with the initial data is set up by means of the Laplace transformation
with respect to time and the Fourier transformation with respect to the x, z coordinates
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ke =ox + 8z dr=dzrdz 2.1)

For the amplitude g, (y) we obtain a nonhomogeneous system of ordinary differential equations of
the eighth order which conveniently is written in matrix form brought to the normal form

g =AW g+ & (2.2)
The prime denotes differentiation with respect to y. The components of the matrix A and the vector
¢ are presented in Sec. 5. The components qy, g4, 95, d3, 9y of the vector g, are the amplitude of the x, y,
z disturbances — of the velocity, pressure, and temperature components, respectively:
=0 %=¢, ¢=aq

The boundary conditions for (2.2) consist of the conditions that the velocity components become zero
and that the temperature and heat flow at y=0 are continuous

7 (0) =g (0) =¢5(0) =0, ags(0) - bg; (0) =0 (2.3)

and the conditions of boundedness of the amplitudes for y — «. By the method of variationof constants
the general solution of Eq. (2.2) can be written in the form
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or for the components

9n = Z(di -+ ) Wni r=1..,9
K
(et Wi (2.5)
i“S w4
0

Here W(y) is a certain fundamental matrix of the homogeneous equation (2.2); W; is a matrix obtained
from W by replacing the i~-th column by the vector £ ; d is a constant vector determined from the boundary
conditions.

We consider together with (2.2) the homogeneous "limiting" equation

"= A (c0) P (A(ee) = lim () (2.6)

T

and its fundamental matrix
Yy =0y °P

Here & is another fundamental matrix of Eq. (2.6):

@ = evAl®) = Pew/ Pl

while P is a constant matrix which brings A(«) into the canonical form J. The columns of ¥ form a sys-
tem of linearly independent solutions of Eg. (2.6):

Vo= pue™”  (1=1...8)
where Ap are the roots of the characteristic equation
det (4 (00) —AE) =0 2.7)
and E is a unit matrix.

It can be shown (Sec. 6) that the homogeneous equation (2.6) has solutions which asymptotically coin-
cide for large y with y,. In the role of the fundamental matrix W we take a matrix made up of these solu-
tions; here w; (j-th column of W) with j < 4 are increasing, while with j > 4 they are decreasing solutions
for y — . 'Ilhen from the conditions of boundedness in the case of y— « it follows

o0

dy = —d;—PSo det W, (1) exp [S SpA(s) dS] dvr (<4
b

-

Here we have taken into account the fact that

oc

det W (y) = det Pexp [—— B Sp A(s) ds;t

Yy

From the conditions (2.3) it follows that
det G,

di=—57- >4
w5 (0) RV wy5(0)
_ wy5(0) N w45 (0)
wss (0) e wss (0)

awgs (0)+bwys (0) . . . awgs (0) + by (0)

The matrix Gj is obtained from G by replacement of the i-th column by the vector 7 with the com-
ponents

4
Tli=——2 d;zj G=1234

i=1

384



wy; (0) C wyy (0)

wy (0) e Wy (0)

ws1 (0) Ce wsy (0)
awsy (0) + buwgy (0) . . . awgy (0) 4 bugy (0) -

We finally can write

g Sexp[goSpA(s)ds]detWidT A<i<4)

di+ 6=
det G;_,

y o
1 Q [
Tt P R exp[g Sp A(s) ds} det Widt + —qeiT 5<i <8
0 T

The inverse Fourier and Laplace transformations applied to (2.5) give the solution of the Cauchy
problem
1 . S—t‘ico ’
0= g7 Yok e S (A e wudp (2.8)

] s
§—100 =1

The path of integration inthe complex p-plane in the expression (2.8) passes on the right of all singu-
larities of the function behind the integral sign. Use of the Laplace transformation(and, hence, the possi-
bility of carrying out such a path) is considered justifiable from a physical viewpoint — a small disturbance
cannot grow faster than an exponential function.

3. The asymptotic expansion of the solution (2.8) in the case of t — = is obtained if we close the con~
tour of integration in the left half-plane ofthe pplane., Theprincipal contributiontothe expansion (in the case
of instability) is provided by the singularities of the integrand expression located in the region Re p> 0.
The singularities can be of two types: branching points and poles. Singularities of the first type do not
contribute to instability. Since wj are analytic in D; (see Sec. 6), it is sufficient to show that branching
points of the roots of Eq. (2.7) are located in the hallf-plane Re p = 0. The determinant in Eq. (2.7) can be
found if we take into account the fact that Eq. (2.7) considered in relation to w =p+ia, v=k*—A? is disper-
sive for small disturbances in a gas at rest:

{ev + o) lo (ev 3w/ 4) (ev + Pro /) + 3v (ev 4 Pr o)/ 4ym2 =0 (3.7)

Here € =1/R, R is the Reynolds number of the incident flow across the thickness of the boundary
layer, M is the Mach number of the incident flow, and k= v a? + 2,

The coordinates of branching points A (p) are determined from the equations

eh? + o =0 (3.2)
(Pr/ v+ 3/4) o + 3Pr/deyM?® —3Pro (o + 3deyM?/y =0 (3.3)
o(ek? + 3w/4)(ek? + Proly) + 3kX(ek? - Pro)/dy M? = (3.4)
‘Solving these equations for w, we obtain

@, = — &k? (3.5)

. a8Pr  Pr ¥y —sp 3y —1)(Pr— 0.75)'"
P23 = = riare (21)1‘/7—0.75)2 (3-6)

p —1) k

o = — 214+ 2 (TPri))ek2iLm——{—o(s) 3.7
wg = — ek? /' Pr + o (g) (3.8)
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The roots of Eq. (3.4) are located in the left half-plane independently of &. This follows from the
Hurwitz criterion [3].

Thus, instability is connected with the discrete spectrum of the boundary value problem (2.2), (2.3),
and the principal part of the asymptotic (t — ) expansion of the solution is written in the form

8
G = § dkei® Pres,, (7 N (ds + ¢;) w,,i) (3.9)

i=1

The summation is carried out over the poles of the integrand expression in (2.8) located in the right
half-plane (if there are no such poles, then obviously q,—0 for t—w). Since A, P, W, £ are analytic in
the region p > 0, the expression (3.9) can be rewritten as

=\ Pitike F 5.10
qn = Sdl‘ Z e T /nap ( )
m p=p,,
8
F,= 2 Wy det Gy, F =detG
where p,, (k) are the roots of the equation

We know [1, 2] that for R that is greater than a certain Ry, Eq. (3.11) has roots which satisfy in some
region of the k-space the condition Re p > 0 [the expression (3.10) is written for the case of simple roots].
This means that the disturbance, having the form of a monochromatic wave, for R > R, will increase with-
out bounds with the time. However, the asymptotic behavior of a localized disturbance can differ from the
behavior of monochromatic components and, in spite of the growth of some of them, the disturbance in a
finite region of space will die out because of the disturbance being carried down the stream [4, 5] (convec-
tive instability). If, however, a localized disturbance grows with time within a finite region of space, then
the flow is said to be absolutely unstable. The formulation of this problem is due to L. D. Landau and
E. M. Lifshits [4]. The elucidation of the problem concerned with the character of the emerging instability
reduces to the analysis of the asymptotic behavior of the integral in the expression (3.10) in the case t— .
We interchange the order of integration and summation in (3.10) and consider one term of the resulting
series

F,

Jm _ s§ dke PmH-ikrm (3'12)
1 p=n,,

integration is confined to the region Q,, in which Re p;y, = 0.

The asymptotic behavior of the integral depends on the character of location of the level lines Repyy, =
const in the complex k-plane. The possible cases are shown in Fig. 1 for two-dimensional (8 =0) distur-
bances (zero level lines are depicted). Figure la corresponds to the stable case; Fig. 1b corresponds to the
case of convective instability, since we can place the path of integration into the complex plane so that
along itRepy, < 0 and Jyy— 0 for t— in the case of a fixed r.

In the third case (Fig. 1c) for the estimate of the integral we can use the cross-over method [6],
placing the path of integration so that it passes through the saddle point in the direction of the steepest
descent, and for the integral we obtain an estimate from which it follows that for t —« it grows without
bounds as exp [Repp(a,)t]/ V1 (o is the saddle point). The cross-over method admits a direct generaliza-
tion for the case of several variables [7], and can be applied to three-dimensional disturbances. The condi-
tion that absolute instability emerges for a certain R=R, is written in the form

P,
oa

9p,, “ _
= 07 W B 0’ Re Pm = O (3.13)

The first two equations serve for the determination of the coordinates of the saddle point; the third
signifies the condition of tangeney of the zero level line at this point.

4. A concrete investigation of the character of instability in a compressible boundary layer was
carried out for the first of the modes that arise additionally in comparison with the incompressible case,
for M=4.5 and T(0) =4.44.
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For an incompressible boundary layer on a flat plate the problem concerned with the character of in-
stability was considered in [8] with the assumption that the Reynolds numbers are large and, consequently,
on both branches of the neutral curve the wave numbers are small. This allowed the authors [8] to use an
asymptotic method. In the investigation it is shown that the boundary layer of Blasius is convectively un-
stable.

For a compressible boundary layer in the case of sufficiently large Mach numbers the most effective
method of investigating the stability, apparently, is a numerical method, and more so, since in the case
being considered in the present work both asymptotes of the neutral curve are nonviscous. A direct calcu~
lation of the level lines Rep =0 was carried out for a series of values of the Reynolds number. The calcula-
tions were carried out for two-dimensional disturbances by a method that is analogous to that used in [9].
In Fig. 2 we have presented the neutral curve, while in Fig. 3 we have shown the zero level lines for the
Reynolds numbers 550, 1140, 3000, marked by the curves 1, 2, 3,respectively, From the results of the
calculation we see that the instability arising when this mode is excited is convective.

5. The matrix A(y) has the following nonzerc components. By u, T, p, ¢ we have denoted the dimen-
sionless (in relation to the corresponding values of the parameters of the incident flow) distributions of the
longitudinal velocity, temperature, density, and viscosity in the boundary layer.

c=p-+iu, ¢e=1/vyvM + 4ps/3R
ay =1, au =pha/p + ¥, Ggg = — '/
ays = ta (R (ypM* 435/ 3), a=pRa' /p + io{ln(p¥/ u))
Ay = — ias } BT) — (Wu' /T /1, agg = — w'n' / (uT7)
ag = 2 iap (In (p*/ W) / (Re), as, = — fop / (Rp)
ass = 4 pus (In (p / pa)y’ / (BRy)
tas = —p3/ ¢ — pk*/ (Rg) + 4 pp’ (In (p* / p o) /(G Ho)
ass = 2Py (In (% / w) / (Rq), a5 — — P/ (Re)
azy = lou'w [ (RT'¢) + 4ps (In ws) / 3T Re)
ags = 4ps / BTRQ), ay = ia, @43 = —3, a = —p' /p
tyy = —iff, anw =35/ T, az = 1, ags = i (B / (ypM?) + 6/ 3)
age = i (In (p**/ )Y, ags = Rps/p+ &
g = — W [ W, agy = — ifs/ (BT, ars =1
Gss = — 2Pr (y — 1) M¥%', asy = — (v — 1) PrRs/ (yn)
ass = PrRpT '/ p — 2ia Pr (y — 1) M2’
ag; = PrpRs/ p -k —u"/p—Priy—1) M2u?u/ (ul)
ags = — 2p' /' p
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The nonzero components of the vector £ are
& = — (pRgw® / u + iars® / 3p)
8 =pgu’/ @ + 4 pn (In (ur® /p%) / (BR o)
& =r’/p, & = — Raws’/pp 4 ifr / Bp)
8 = — oRpqir / p + oR (v — 1) qus® / (yp)

° i * . ° o q°
<qkn = G Se—““'qn(t:O)dr, "l =qu— ;j >

6. The homogeneous equation (2.2) can be written in the form
g =A (o) ¢+ Ry 6.1)
The matrices A(y), A (w) are analytic in p in the region

3R
D:{RGP>—W7 |P|<°°} (= max )

0LY< oo

. such that

It is required to show that there exist solutions wj

lim (wje—*¥ — pj) =0 (6.2)

Yo

for p & D. About R(y) we assume the following conditions of integratability [10]:

]

§ e R dy < o (6.3)

0

for any « >w = 0, p & D. The norm ||R (y){| is determined just as in [11].

We consider the integral equation

g=P;—\ Dy —1)R(T)g(t}dt G=%»=0 (6.4)

ey

By substitution we verify that if wj satisfies (6.4); then
wi' = A (y) w;

The solution of Eq. (6.4) can be continued into the region y < y, as a solution of Eq. (6.1). By a method
analogous to that used in [11], using (6.3) we can show that Eq. (6.1) has a solution w; that satisfies the con-
dition (6.2). Since the matrix dR/dp also satisfies the condition (6.3), we analogously can show that the deriv.
ative de/ dp exists and is unique for p &= Dj. Here D;=D— I‘j; I‘j is a setof sections which are such that
A j (p) is a single-valued branch of the function A (p) in IJ)j.
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